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3 Alterations

We saw the alterations method in Section 1.1 to give lower bounds to Ramsey numbers.
The basic idea is to first make a random construction, and then fix the blemishes.

3.1 Dominating set in graphs
In a graph 𝐺 = (𝑉, 𝐸), we say that𝑈 ⊆ 𝑉 is dominating if every vertex in 𝑉 \𝑈 has a
neighbor in𝑈.

Theorem 3.1.1
Every graph on 𝑛 vertices with minimum degree 𝛿 > 1 has a dominating set of size

≤
(
log(𝛿 + 1) + 1

𝛿 + 1

)
𝑛.

Naive attempt: take out vertices greedily. The first vertex eliminates 1+ 𝛿 vertices, but
subsequent vertices eliminate possibly fewer vertices.

Proof. Two-step process (alteration method):
1. Choose a random subset
2. Add enough vertices to make it dominating

Let 𝑝 ∈ [0, 1] to be decided later. Let 𝑋 be a random subset of 𝑉 where every vertex
is included with probability 𝑝 independently.

Let 𝑌 = 𝑉 \ (𝑋 ∪ 𝑁 (𝑋)). Each 𝑣 ∈ 𝑉 lies in 𝑌 with probability ≤ (1 − 𝑝)1+𝛿.

Then 𝑋 ∪ 𝑌 is dominating, and

E[|𝑋 ∪ 𝑌 |] = E[|𝑋 |] + E[|𝑌 |] ≤ 𝑝𝑛 + (1 − 𝑝)1+𝛿𝑛 ≤ (𝑝 + 𝑒−𝑝(1+𝛿))𝑛

using 1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥 ∈ R. Finally, setting 𝑝 =
log(𝛿+1)
𝛿+1 to minimize 𝑝 + 𝑒−𝑝(1+𝛿) ,

we bound the above expression by

≤
(
1 + log(𝛿 + 1)

𝛿 + 1

)
. □
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3.2 Heilbronn triangle problem

Question 3.2.1
How can one place 𝑛 points in the unit square so that no three points forms a triangle
with small area?

Let
Δ(𝑛) = sup

𝑆⊆[0,1]2

|𝑆 |=𝑛

min
𝑝,𝑞,𝑟∈𝑆
distinct

area(𝑝𝑞𝑟)/

Naive constructions fair poorly. E.g., 𝑛 points around a circle has a triangle of area
Θ(1/𝑛3) (the triangle formed by three consectutive points has side lengths ≍ 1/𝑛 and
angle 𝜃 = (1 − 1/𝑛)2𝜋). Even worse is arranging points on a grid, as you would get
triangles of zero area.

Heilbronn conjectured that Δ(𝑛) = 𝑂 (𝑛−2).

Komlós, Pintz, and Szemerédi (1982) disproved the conjecture, showing Δ(𝑛) ≳
𝑛−2 log 𝑛. They used an elaborate probabilistic construction. Here we show a much
simpler version probabilistic construction that gives a weaker bound Δ(𝑛) ≳ 𝑛−2.

Remark 3.2.2 (Upper bounds). For a long time, the best upper bound known was
Δ(𝑛) ≤ 𝑛−8/7+𝑜(1) due to Komlós, Pintz, and Szemerédi (1981). This was recently
improved to Δ(𝑛) ≤ 𝑛−8/7−𝑐 by Cohen, Pohoata, and Zakharov (2023+).

Theorem 3.2.3 (Many points without small area triangles)
For every positive integer 𝑛, there exists a set of 𝑛 points in [0, 1]2 such that every
triple spans a triangle of area ≥ 𝑐𝑛−2, for some absolute constant 𝑐 > 0.

Proof. Choose 2𝑛 points at random. For every three random points 𝑝, 𝑞, 𝑟 , let us
estimate

P𝑝,𝑞,𝑟 (area(𝑝, 𝑞, 𝑟) ≤ 𝜀).

By considering the area of a circular annulus around 𝑝, with inner and outer radii 𝑥
and 𝑥 + Δ𝑥, we find

P𝑝,𝑞 ( |𝑝𝑞 | ∈ [𝑥, 𝑥 + Δ𝑥]) ≤ 𝜋((𝑥 + Δ𝑥)2 − 𝑥2).
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So the probability density function satisfies

P𝑝,𝑞 ( |𝑝𝑞 | ∈ [𝑥, 𝑥 + 𝑑𝑥]) ≤ 2𝜋𝑥𝑑𝑥.

For fixed 𝑝, 𝑞

P𝑟 (area(𝑝𝑞𝑟) ≤ 𝜀) = P𝑟
(
dist(𝑝𝑞, 𝑟) ≤ 2𝜀

|𝑝𝑞 |

)
≲

𝜀

|𝑝𝑞 | .

Thus, with 𝑝, 𝑞, 𝑟 at random

P𝑝,𝑞,𝑟 (area(𝑝𝑞𝑟) ≤ 𝜀) ≲
∫ √

2

0
2𝜋𝑥

𝜀

𝑥
𝑑𝑥 ≍ 𝜀.

Given these 2𝑛 random points, let 𝑋 be the number of triangles with area ≤ 𝜀. Then
E𝑋 = 𝑂 (𝜀𝑛3).

Choose 𝜀 = 𝑐/𝑛2 with 𝑐 > 0 small enough so that E𝑋 ≤ 𝑛.

Delete a point from each triangle with area ≤ 𝜀.

The expected number of remaining points is E[2𝑛− 𝑋] ≥ 𝑛, and no triangles with area
≤ 𝜀 = 𝑐/𝑛2.

Thus with positive probability, we end up with ≥ 𝑛 points and no triangle with area
≤ 𝑐/𝑛2. □

Algebraic construction. Here is another construction due to Erdős (in appendix of
Roth (1951)) also giving Δ(𝑛) ≳ 𝑛−2:

Let 𝑝 be a prime. The set {(𝑥, 𝑥2) ∈ F2
𝑝 : 𝑥 ∈ F𝑝} has no 3 points collinear (a parabola

meets every line in ≤ 2 points). Take the corresponding set of 𝑝 points in [𝑝]2 ⊆ Z2.
Then every triangle has area ≥ 1/2 due to Pick’s theorem. Scale back down to a unit
square. (If 𝑛 is not a prime, then use that there is a prime between 𝑛 and 2𝑛.)

3.3 Markov’s inequality
We note an important tool that will be used next.

Theorem 3.3.1 (Markov’s inequality)
Let 𝑋 ≥ 0 be random variable. Then for every 𝑎 > 0,

P(𝑋 ≥ 𝑎) ≤ E[𝑋]
𝑎

.
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Proof. E[𝑋] ≥ E[𝑋1𝑋≥𝑎] ≥ E[𝑎1𝑋≥𝑎] = 𝑎P(𝑋 ≥ 𝑎) □

Take-home message: for r.v. 𝑋 ≥ 0, if E𝑋 is very small, then typically 𝑋 is small.

3.4 High girth and high chromatic number
If a graph has a 𝑘-clique, then you know that its chromatic number is at least 𝑘 .

Conversely, if a graph has high chromatic number, is it always possible to certify this
fact from some “local information”?

Surprisingly, the answer is no. The following ingenious construction shows that a
graph can be “locally tree-like” while still having high chromatic number.

The girth of a graph is the length of its shortest cycle.

Theorem 3.4.1 (Erdős 1959)
For all 𝑘, ℓ, there exists a graph with girth > ℓ and chromatic number > 𝑘 .

Proof. Let 𝐺 ∼ 𝐺 (𝑛, 𝑝) with 𝑝 = (log 𝑛)2/𝑛 (the proof works whenever log 𝑛/𝑛 ≪
𝑝 ≪ 𝑛−1+1/ℓ). Here 𝐺 (𝑛, 𝑝) is Erdős–Rényi random graph (𝑛 vertices, every edge
appearing with probability 𝑝 independently).

Let 𝑋 be the number of cycles of length at most ℓ in 𝐺. By linearity of expectations,
as there are exactly

(𝑛
𝑖

)
(𝑖 − 1)!/2 cycles of length 𝑖 in 𝐾𝑛 for each 3 ≤ 𝑖 ≤ 𝑛, we have

(recall that ℓ is a constant)

E𝑋 =

ℓ∑︁
𝑖=3

(
𝑛

𝑖

)
(𝑖 − 1)!

2
𝑝𝑖 ≤

ℓ∑︁
𝑖=3

𝑛𝑖𝑝𝑖 = ℓ(log 𝑛)2𝑖 = 𝑜(𝑛).

By Markov’s inequality
P(𝑋 ≥ 𝑛/2) ≤ E𝑋

𝑛/2 = 𝑜(1).

(This allows us to get rid of all short cycles.)

How can we lower bound the chromatic number 𝜒(·)? Note that 𝜒(𝐺) ≥ |𝑉 (𝐺) |/𝛼(𝐺),
where 𝛼(𝐺) is the independence number (the size of the largest independent set).

With 𝑥 = (3/𝑝) log 𝑛 = 3𝑛/log 𝑛,

P(𝛼(𝐺) ≥ 𝑥) ≤
(
𝑛

𝑥

)
(1 − 𝑝) (

𝑥
2) < 𝑛𝑥𝑒−𝑝𝑥(𝑥−1)/2 = (𝑛𝑒−𝑝(𝑥−1)/2)𝑥 = 𝑛−Θ(𝑛) = 𝑜(1).
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Let 𝑛 be large enough so that P(𝑋 ≥ 𝑛/2) < 1/2 and P(𝛼(𝐺) ≥ 𝑥) < 1/2. Then there
is some 𝐺 with fewer than 𝑛/2 cycles of length ≤ ℓ and with 𝛼(𝐺) ≤ 3𝑛/log 𝑛.

Remove a vertex from each cycle to get 𝐺′. Then |𝑉 (𝐺′) | ≥ 𝑛/2, girth > ℓ, and
𝛼(𝐺′) ≤ 𝛼(𝐺) ≤ 3𝑛/log 𝑛, so

𝜒(𝐺′) ≥ |𝑉 (𝐺′) |
𝛼(𝐺′) ≥ 𝑛/2

3𝑛/log 𝑛
=

log 𝑛
6

> 𝑘

if 𝑛 is sufficiently large. □

Remark 3.4.2. Erdős (1962) also showed that in fact one needs to see at least a linear
number of vertices to deduce high chromatic number: for all 𝑘 , there exists 𝜀 = 𝜀𝑘

such that for all sufficiently large 𝑛 there exists an 𝑛-vertex graph with chromatic
number > 𝑘 but every subgraph on ⌊𝜀𝑛⌋ vertices is 3-colorable. (In fact, one can take
𝐺 ∼ 𝐺 (𝑛, 𝐶/𝑛); see "Probabilistic Lens: Local coloring" in Alon–Spencer)

3.5 Random greedy coloring
In Section 1.3, we saw a simple argument showing that every 𝑘-uniform hypergraph
with than 2𝑘−1 edges is 2-colorable (meaning that we can color the vertices red/blue
without no monochromatic edge). Take a moment to remember the proof.

In this section, we improve this result. The next result gives the current best known
bound.

Theorem 3.5.1 (Radhakrishnan and Srinivasan (2000))
There is some constant 𝑐 > 0 so that every 𝑘-uniform hypergraph with at most
𝑐

√︃
𝑘

log 𝑘 2𝑘 edges is 2-colorable.

Recall from Section 1.3 that there exists a non-2-colorable 𝑘-uniform hypergraph on
𝑘2 vertices and 𝑂 (𝑘22𝑘 ) edges, via a random construction.

Here we present a simpler proof, based on a random greedy coloring, due to Cherkashin
and Kozik (2015), following an approach of Pluhaár (2009).

Proof. Consider a 𝑘-graph with 𝑚 edges.

Let us order the vertices using a uniformly random chosen permutation.

Color vertices greedily from left to right: color a vertex blue unless it would create a
monochromatic edge, in which case color it red (i.e., every red vertex is the final vertex
in an edge with all earlier 𝑘 − 1 vertices have already been colored blue).
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The resulting coloring has no blue edges. The greedy coloring succeeds if it does not
create a red edge.

Analyzing a greedy coloring is tricky, since the color of a single vertex may depend on
the entire history. Instead, we identify a specific feature that necessarily results from
a unsuccessful coloring.

If there is a red edge, then there must be two edges 𝑒, 𝑓 so that the last vertex of 𝑒
is the first vertex of 𝑓 . Call such pair (𝑒, 𝑓 ) conflicting (note that whether (𝑒, 𝑓 ) is
conflicting depends on the random ordering of the vertices, but not on how we assigned
colors).

What is the probability of seeing a conflicting pair? Here is the randomness comes
from the random ordering of vertices.

Each pair of edges with exactly one vertex in common conflicts with probability
(𝑘−1)!2

(2𝑘−1)! = 1
2𝑘−1

(2𝑘−2
𝑘−1

)−1 ≍ 𝑘−1/22−2𝑘 . Summing over all ≤ 𝑚2 pairs of edges that
share a unique vertex, we find that the expected number of conflicting pairs is at most
≲ 𝑚2𝑘−1/22−2𝑘 , which is < 1 for some 𝑚 ≍ 𝑘1/42𝑘 . In this case, there is some
ordering of vertices creating no conflicting pairs, in which case the greedy coloring
always succeeds.

The above argument, due to Pluhaár (2009), yields 𝑚 ≲ 𝑘1/42𝑘 . Next we will refine
the argument to obtain a better bound of

√︃
𝑘

log 𝑘 2𝑘 as claimed.

Instead of just considering a random permutation, let us map each vertex to [0, 1]
independently and uniformly at random. This map induces an ordering of the vertices,
but it comes with further information that we will use.

Write [0, 1] = 𝐿 ∪ 𝑀 ∪ 𝑅 where (𝑝 to be decided)

𝐿 :=
[
0,

1 − 𝑝
2

)
, 𝑀 :=

[
1 − 𝑝

2
,
1 + 𝑝

2

]
, 𝑅 :=

(
1 + 𝑝

2
, 1

]
.

The probability that a given edge lands entirely in 𝐿 is ( 1−𝑝
2 )𝑘 , and likewise with 𝑅.

Taking a union bound over all edges,

P(some edge lies in 𝐿 or 𝑅) ≤ 2𝑚
(
1 − 𝑝

2

) 𝑘
.

Suppose that no edge of 𝐻 lies entirely in 𝐿 or entirely in 𝑅. If (𝑒, 𝑓 ) conflicts, then
their unique common vertex 𝑥𝑣 ∈ 𝑒 ∩ 𝑓 must lie in 𝑀 . So the probability that (𝑒, 𝑓 )
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conflicts is (here we use 𝑥(1 − 𝑥) ≤ 1/4)∫ (1+𝑝)/2

(1−𝑝)/2
𝑥𝑘−1(1 − 𝑥)𝑘−1 𝑑𝑥 ≤ 𝑝4−𝑘+1.

Taking a union bound over all ≤ 𝑚2 pairs of edges, we find that

P(some conflicting pair has the common vertex in 𝑀) ≤ 𝑚2𝑝4−𝑘+1.

Thus

P(there is a conflicting pair)
≤ P(some edge lies in 𝐿 or 𝑅) + P(some conflicting pair has the common vertex in 𝑀)

≤ 2𝑚
(
1 − 𝑝

2

) 𝑘
+ 𝑚2𝑝4−𝑘+1

< 2−𝑘+1𝑚𝑒−𝑝𝑘 + (2−𝑘+1𝑚)2𝑝

set 𝑝 = log(2𝑘−1𝑘/𝑚)/𝑘 to minimize the right-hand side to get

=
𝑚2

4𝑘−1𝑘
+ 𝑚2

4𝑘−1𝑘
log

(
2𝑘−2𝑘

𝑚

)
which is < 1 for 𝑚 = 𝑐2𝑘

√︁
𝑘/log 𝑘 with 𝑐 > 0 being a sufficiently small constant (we

should assume that is 𝑘 large enough to ensure 𝑝 ∈ [0, 1]; smaller values of 𝑘 can be
handled in the theorem exceptionally by later reducing the constant 𝑐). □

Food for thought: what is the source of the gain in the the 𝐿 ∪ 𝑀 ∪ 𝑅 argument? The
expected number of conflicting pairs is unchanged. It must be that we are somehow
clustering the bad events by considering the event when some edge lies in 𝐿 or 𝑅.

It remains an intriguing open problem to improve this bound further.

Exercises
1. Using the alteration method, prove the Ramsey number bound

𝑅(4, 𝑘) ≥ 𝑐(𝑘/log 𝑘)2

for some constant 𝑐 > 0.

2. Prove that every 3-uniform hypergraph with 𝑛 vertices and𝑚 ≥ 𝑛 edges contains
an independent set (i.e., a set of vertices containing no edges) of size at least
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𝑐𝑛3/2/
√
𝑚, where 𝑐 > 0 is a constant.

3. Prove that every 𝑘-uniform hypergraph with 𝑛 vertices and𝑚 edges has a transver-
sal (i.e., a set of vertices intersecting every edge) of size at most 𝑛(log 𝑘)/𝑘+𝑚/𝑘 .

4. Zarankiewicz problem. Prove that for every positive integers 𝑛 ≥ 𝑘 ≥ 2, there
exists an 𝑛 × 𝑛 matrix with {0, 1} entries, with at least 1

2𝑛
2−2/(𝑘+1) 1’s, such that

there is no 𝑘 × 𝑘 submatrix consisting of all 1’s.

5. Fix 𝑘 . Prove that there exists a constant 𝑐𝑘 > 1 so that for every sufficiently
large 𝑛 > 𝑛0(𝑘), there exists a collection F of at least 𝑐𝑛

𝑘
subsets of [𝑛] such that

for every 𝑘 distinct 𝐹1, . . . , 𝐹𝑘 ∈ F , all 2𝑘 intersections
⋂𝑘
𝑖=1𝐺𝑖 are nonempty,

where each 𝐺𝑖 is either 𝐹𝑖 or [𝑛] \ 𝐹𝑖.

6. Acute sets in R𝑛. Prove that, for some constant 𝑐 > 0, for every 𝑛, there exists a
family of at least 𝑐(2/

√
3)𝑛 subsets of [𝑛] containing no three distinct members

𝐴, 𝐵, 𝐶 satisfying 𝐴 ∩ 𝐵 ⊆ 𝐶 ⊆ 𝐴 ∪ 𝐵.
Deduce that there exists a set of at least 𝑐(2/

√
3)𝑛 points in R𝑛 so that all angles

determined by three points from the set are acute.
Remark. The current best lower and upper bounds for the maximum size of
an “acute set” in R𝑛 (i.e., spanning only acute angles) are 2𝑛−1 + 1 and 2𝑛 − 1
respectively.

7. ★ Covering complements of sparse graphs by cliques

a) Prove that every graph with 𝑛 vertices and minimum degree 𝑛 − 𝑑 can be
written as a union of 𝑂 (𝑑2 log 𝑛) cliques.

b) Prove that every bipartite graph with 𝑛 vertices on each side of the ver-
tex bipartition and minimum degree 𝑛 − 𝑑 can be written as a union of
𝑂 (𝑑 log 𝑛) complete bipartite graphs (assume 𝑑 ≥ 1).

8. ★ Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑛 vertices and minimum degree 𝛿 ≥ 2. Prove
that there exists 𝐴 ⊆ 𝑉 with |𝐴| = 𝑂 (𝑛(log 𝛿)/𝛿) so that every vertex in 𝑉 \ 𝐴
contains at least one neighbor in 𝐴 and at least one neighbor not in 𝐴.

9. ★ Prove that every graph 𝐺 without isolated vertices has an induced subgraph
𝐻 on at least 𝛼(𝐺)/2 vertices such that all vertices of 𝐻 have odd degree. Here
𝛼(𝐺) is the size of the largest independent set in 𝐺.
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