
PROBABILISTIC METHODS IN COMBINATORICS
MIT 18.226 (FALL 2024)

PROBLEM SET

https://sammy-luo.github.io/18-226/

A. Introduction and linearity of expectations

A1. Verify the following asymptotic calculations used in Ramsey number lower bounds:
(a) For each k, the largest n satisfying

(
n
k

)
21−(

k
2) < 1 has n =

(
1

e
√
2
+ o(1)

)
k2k/2.

(b) For each k, the maximum value of n −
(
n
k

)
21−(

k
2) as n ranges over positive integers is(

1
e + o(1)

)
k2k/2.

(c) For each k, the largest n satisfying e
((

k
2

)(
n

k−2

)
+ 1

)
21−(

k
2) < 1 satisfies n =

(√
2
e + o(1)

)
k2k/2.

A2. Prove that, if there is a real p ∈ [0, 1] such that(
n

k

)
p(

k
2) +

(
n

t

)
(1− p)(

t
2) < 1

then the Ramsey number R(k, t) satisfies R(k, t) > n. Using this show that

R(4, t) ≥ c

(
t

log t

)3/2

for some constant c > 0.
A3.ps1 Let G be a graph with n vertices and m edges. Prove that Kn can be written as a union of

O(n2(log n)/m) isomorphic copies of G (not necessarily edge-disjoint).
A4. Prove that there is an absolute constant C > 0 so that for every n× n matrix with distinct

real entries, one can permute its rows so that no column in the permuted matrix contains an
increasing subsequence of length at least C

√
n. (A subsequence does not need to be selected

from consecutive terms. For example, (1, 2, 3) is an increasing subsequence of (1, 5, 2, 4, 3).)
A5. Generalization of Sperner’s theorem. Let F be a collection of subset of [n] that does not

contain k + 1 elements forming a chain: A1 ⊊ · · · ⊊ Ak+1. Prove that F is no larger than
taking the union of the k levels of the Boolean lattice closest to the middle layer.

A6. Let G be a graph on n ≥ 10 vertices. Suppose that adding any new edge to G would create
a new clique on 10 vertices. Prove that G has at least 8n− 36 edges.

Hint in white: apply Bollobás’ two families theorem

A7. Let k ≥ 4 and H a k-uniform hypergraph with at most 4k−1/3k edges. Prove that there is a
coloring of the vertices of H by four colors so that in every edge all four colors are represented.

A8.ps1 Given a set F of subsets of [n] and A ⊆ [n], write F|A := {S∩A : S ∈ F} (its projection onto
A). Prove that for every n and k, there exists a set F of subsets of [n] with |F| = O(k2k log n)

such that for every k-element subset A of [n], F|A contains all 2k subsets of A.
A9.ps1 Let A1, . . . , Am be r-element sets and B1, . . . , Bm be s-element sets. Suppose Ai∩Bi = ∅ for

each i, and for each i ̸= j, either Ai∩Bj ̸= ∅ or Aj∩Bi ̸= ∅. Prove that m ≤ (r+s)r+s/(rrss).
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A10.ps1⋆ Show that in every non-2-colorable n-uniform hypergraph, one can find at least n
2

(
2n−1
n

)
unordered pairs of edges with each pair intersecting in exactly one vertex.

A11. Let A be a measurable subset of the unit sphere in R3 (centered at the origin) containing no
pair of orthogonal points.
(a)ps1 Prove that A occupies at most 1/3 of the sphere in terms of surface area.
(b)ps1⋆ Prove an upper bound smaller than 1/3 (give your best bound).

A12.ps1⋆ Prove that every set of 10 points in the plane can be covered by a union of disjoint unit disks.
A13. Let r = (r1, . . . , rk) be a vector of nonzero integers whose sum is nonzero. Prove that there

exists a real c > 0 (depending on r only) such that the following holds: for every finite set
A of nonzero reals, there exists a subset B ⊆ A with |B| ≥ c|A| such that there do not exist
b1, . . . , bk ∈ B with r1b1 + · · ·+ rkbk = 0.

A14.ps1 Prove that every set A of n nonzero integers contains two disjoint subsets B1 and B2, such
that both B1 and B2 are sum-free, and |B1|+ |B2| > 2n/3.

A15.ps1 Let G be an n-vertex graph with pn2 edges, with n ≥ 10 and p ≥ 10/n. Prove that G

contains a pair of vertex-disjoint and isomorphic subgraphs (not necessarily induced) each
with at least cp2n2 edges, where c > 0 is a constant.

A16.ps1⋆ Prove that for every positive integer r, there exists an integer K such that the following holds.
Let S be a set of rk points evenly spaced on a circle. If we partition S = S1 ∪ · · · ∪ Sr so
that |Si| = k for each i, then, provided k ≥ K, there exist r congruent triangles where the
vertices of the i-th triangle lie in Si, for each 1 ≤ i ≤ r.

A17.ps1⋆ Prove that [n]d cannot be partitioned into fewer than 2d sets each of the form A1 × · · · ×Ad

where Ai ⊊ [n].

B. Alteration method

B1. Using the alteration method, prove the Ramsey number bound

R(4, k) ≥ c(k/ log k)2

for some constant c > 0.
B2. Prove that every 3-uniform hypergraph with n vertices and m ≥ n edges contains an inde-

pendent set (i.e., a set of vertices containing no edges) of size at least cn3/2/
√
m, where c > 0

is a constant.
B3. Prove that every k-uniform hypergraph with n vertices and m edges has a transversal (i.e., a

set of vertices intersecting every edge) of size at most n(log k)/k +m/k.
B4.ps2 Zarankiewicz problem. Prove that for every positive integers n ≥ k ≥ 2, there exists an n×n

matrix with {0, 1} entries, with at least 1
2n

2−2/(k+1) 1’s, such that there is no k×k submatrix
consisting of all 1’s.

B5.ps2 Fix k. Prove that there exists a constant ck > 1 so that for every sufficiently large n >

n0(k), there exists a collection F of at least cnk subsets of [n] such that for every k distinct
F1, . . . , Fk ∈ F , all 2k intersections

⋂k
i=1Gi are nonempty, where each Gi is either Fi or

[n] \ Fi.
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B6. Acute sets in Rn. Prove that, for some constant c > 0, for every n, there exists a family
of at least c(2/

√
3)n subsets of [n] containing no three distinct members A,B,C satisfying

A ∩B ⊆ C ⊆ A ∪B.
Deduce that there exists a set of at least c(2/

√
3)n points in Rn so that all angles determined

by three points from the set are acute.
Remark. The current best lower and upper bounds for the maximum size of an “acute set”
in Rn (i.e., spanning only acute angles) are 2n−1 + 1 and 2n − 1 respectively.

B7.ps2⋆ Covering complements of sparse graphs by cliques
(a) Prove that every graph with n vertices and minimum degree n − d can be written as a

union of O(d2 log n) cliques.
(b) Prove that every bipartite graph with n vertices on each side of the vertex bipartition

and minimum degree n − d can be written as a union of O(d log n) complete bipartite
graphs (assume d ≥ 1).

B8.ps2⋆ Let G = (V,E) be a graph with n vertices and minimum degree δ ≥ 2. Prove that there
exists A ⊆ V with |A| = O(n(log δ)/δ) so that every vertex in V \ A contains at least one
neighbor in A and at least one neighbor not in A.

B9.ps2⋆ Prove that every graph G without isolated vertices has an induced subgraph H on at least
α(G)/2 vertices such that all vertices of H have odd degree. Here α(G) is the size of the
largest independent set in G.

C. Second moment method

C1.ps2 Threshold for k-APs. Let [n]p denote the random subset of {1, . . . , n} where every element
is included with probability p independently. For each fixed integer k ≥ 3, determine the
threshold for [n]p to contain a k-term arithmetic progression.

C2. Show that, for each fixed positive integer k, there is a sequence pn such that

P(G(n, pn) has a connected component with exactly k vertices) → 1 as n → ∞.

Hint in white: make the random graph contain some specific subgraph but not some others

C3.ps2 Poisson limit. Let X be the number of triangles in G(n, c/n) for some fixed c > 0.
(a) For every nonnegative integer k, determine the limit of E

(
X
k

)
as n → ∞.

(b) Let Y ∼ Binomial(n, λ/n) for some fixed λ > 0. For every nonnegative integer k,
determine the limit of E

(
Y
k

)
as n → ∞, and show that it agrees with the limit in (a) for

some λ = λ(c).
We know that Y converges to the Poisson distribution with mean λ. Also, the Poisson
distribution is determined by its moments.

(c) Compute, for fixed every nonnegative integer t, the limit of P(X = t) as n → ∞.
(In particular, this gives the limit probability that G(n, c/n) contains a triangle, i.e.,
limn→∞ P(X > 0). This limit increases from 0 to 1 continuously when c ranges from 0 to
+∞, thereby showing that the property of containing a triangle has a coarse threshold.)

C4.ps2 Central limit theorem for triangle counts. Find a real (non-random) sequence an so that,
letting X be the number of triangles and Y be the number of edges in the random graph
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G(n, 1/2), one has
Var(X − anY ) = o(VarX).

Deduce that X is asymptotically normal, that is, (X−EX)/
√
VarX converges to the normal

distribution.
(You can solve for the minimizing an directly similar to ordinary least squares linear regression, or first write

the edge indicator variables as Xij = (1+Yij)/2 and then expand. The latter approach likely yields a cleaner

computation.)

C5. Isolated vertices. Let pn = (log n+ cn)/n.
(a) Show that, as n → ∞,

P(G(n, pn) has no isolated vertices) →

0 if cn → −∞,

1 if cn → ∞.

(b) Suppose cn → c ∈ R, compute, with proof, the limit of LHS above as n → ∞, by
following the approach in C3.

C6.ps2⋆ Is the threshold for the bipartiteness of a random graph coarse or sharp?
(You are not allowed to use any theorems that we did not prove in class/notes.)

C7. Triangle packing.ps2 Prove that, with probability approaching 1 as n → ∞, G(n, n−1/2) has at
least cn3/2 edge-disjoint triangles, where c > 0 is some constant.

Hint in white: rephrase as finding a large independent set

C8.ps3 Nearly perfect triangle factor. Prove that, with probability approaching 1 as n → ∞,
(a) G(n, n−2/3) has at least n/100 vertex-disjoint triangles.
(b) Simple nibble. G(n,Cn−2/3) has at least 0.33n vertex-disjoint triangles, for some con-

stant C.
Hint in white: view a random graph as the union of several independent random graphs & iterate (a)

C9. Permuted correlation. Recall that the correlation of two non-constant random variables X

and Y is defined to be corr(X,Y ) := Cov[X,Y ]/
√

(VarX)(VarY ).
Let f, g ∈ [n] → R be two non-constant functions. Prove that there exist permutations π

and τ of [n] such that, with Z being a uniform random element of [n],

corr(f(π(Z)), g(Z))− corr(f(τ(Z)), g(Z)) ≥ 2√
n− 1

.

Furthermore, show that equality can be achieved for even n.
Hint in white: Compute the variance of the correlation for a random permutation.

C10.ps3 Let v1 = (x1, y1), . . . , vn = (xn, yn) ∈ Z2 with |xi| , |yi| ≤ 2n/2/(100
√
n) for all i ∈ [n]. Show

that there are two disjoint sets I, J ⊆ [n], not both empty, such that
∑

i∈I vi =
∑

j∈J vj .
C11.ps3⋆ Prove that there is an absolute constant C > 0 so that the following holds. For every prime

p and every A ⊆ Z/pZ with |A| = k, there exists an integer x so that {xa : a ∈ A} intersects
every interval of length at least Cp/

√
k in Z/pZ.

C12.ps3⋆ Prove that there is a constant c > 0 so that every hyperplane containing the origin in Rn

intersects at least c-fraction of the 2n closed unit balls centered at {−1, 1}n.
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D. Chernoff bound

D1. Prove that with probability 1− o(1) as n → ∞, every bipartite subgraph of G(n, 1/2) has at
most n2/8 + 10n3/2 edges.

D2. Unbalancing lights.ps3 Prove that there is a constant C so that for every positive integer n,
one can find an n× n matrix A with {−1, 1} entries, so that for all vectors x, y ∈ {−1, 1}n,
|y⊺Ax| ≤ Cn3/2.

D3.ps3 Prove that there exists a constant c > 1 such that for every n, there are at least cn points in
Rn so that every triple of points form a triangle whose angles are all less than 61◦.

D4. Planted clique.ps3 Give a deterministic polynomial-time algorithm for the following task so that
it succeeds over the random input with probability approaching 1 as n → ∞.

Input: some unlabeled n-vertex G created as the union of G(n, 1/2) and a clique on
t =

⌊
100

√
n log n

⌋
vertices.

Output: a clique in G of size t.
D5. Weighing coins. You are given n coins, each with one of two known weights, but otherwise

indistinguishable. You can use a scale that outputs the combined weight of any subset of the
coins. You must decide in advance which subsets S1, . . . , Sk ⊆ [n] of the coins to weigh. We
wish to determine the minimum number of weighings needed to identify the weight of every
coin. (Below, X and Y represent two possibilities for which coins are of the first weight.)
(a)ps3⋆ Prove that if k ≤ 1.99n/ log2 n and n is sufficiently large, then for every S1, . . . , Sk ⊆ [n],

there are two distinct subsets X,Y ⊆ [n] such that |X ∩ Si| = |Y ∩ Si| for all i ∈ [k].
(There is a neat solution to part (a) using information theory, though here you are explicitly asked to

solve it using the Chernoff bound.)

(b)ps3⋆ Show that there is some constant C such that (a) is false if 1.99 is replaced by C. (What
is the best C you can get?)

E. Lovász local lemma

E1.ps3 Show that it is possible to color the edges of Kn with at most 3
√
n colors so that there are

no monochromatic triangles.
E2. Prove that it is possible to color the vertices of every k-uniform k-regular hypergraph using

at most k/ log k colors so that every color appears at most O(log k) times on each edge.
E3. Hitting thin rectangles.ps3⋆ Prove that there is a constant C > 0 so that for every sufficiently

small ϵ > 0, one can choose exactly one point inside each grid square [n, n+1)× [m,m+1) ⊂
R2, m,n ∈ Z, so that every rectangle of dimensions ϵ by (C/ϵ) log(1/ϵ) in the plane (not
necessarily axis-aligned) contains at least one chosen point.

E4. List coloring.ps4 Prove that there is some constant c > 0 so that given a graph and a set of k
acceptable colors for each vertex such that every color is acceptable for at most ck neighbors
of each vertex, there is always a proper coloring where every vertex is assigned one of its
acceptable colors.

E5. Prove that, for every ϵ > 0, there exist ℓ0 and some (a1, a2, . . . ) ∈ {0, 1}N such that for every
ℓ > ℓ0 and every i > 1, the vectors (ai, ai+1, . . . , ai+ℓ−1) and (ai+ℓ, ai+ℓ+1, . . . , ai+2ℓ−1) differ
in at least (12 − ϵ)ℓ coordinates.
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E6. Avoiding periodically colored paths.ps4 Prove that for every ∆, there exists k so that every graph
with maximum degree at most ∆ has a vertex-coloring using k colors so that there is no path
of the form v1v2 . . . v2ℓ (for any positive integer ℓ) where vi has the same color as vi+ℓ for
each i ∈ [ℓ]. (Note that vertices on a path must be distinct.)

E7.ps4 Prove that every graph with maximum degree ∆ can be properly edge-colored using O(∆)

colors so that every cycle contains at least three colors.
(An edge-coloring is proper if it never assigns the same color to two edges sharing a vertex.)

E8.ps4⋆ Prove that for every ∆, there exists g so that every bipartite graph with maximum degree
∆ and girth at least g can be properly edge-colored using ∆ + 1 colors so that every cycle
contains at least three colors.

E9.ps4⋆ Prove that for every positive integer r, there exists Cr so that every graph with maximum
degree ∆ has a proper vertex coloring using at most Cr∆

1+1/r colors so that every vertex has
at most r neighbors of each color.

E10. Vertex-disjoint cycles in digraphs. (Recall that a directed graph is k-regular if all vertices
have in-degree and out-degree both equal to k. Also, cycles cannot repeat vertices.)
(a)ps4 Prove that every k-regular directed graph has at least ck/ log k vertex-disjoint directed

cycles, where c > 0 is some constant.
(b)ps4⋆ Prove that every k-regular directed graph has at least ck vertex-disjoint directed cycles,

where c > 0 is some constant.
Hint in white: split in two and iterate

E11. (a) Generalization of Cayley’s formula. Using Prüfer codes, prove the identity

x1x2 · · ·xn(x1 + · · ·+ xn)
n−2 =

∑
T

x
dT (1)
1 x

dT (2)
2 · · ·xdT (n)

n

where the sum is over all trees T on n vertices labeled by [n] and dT (i) is the degree of
vertex i in T .

(b) Let F be a forest with vertex set [n], with components having f1, . . . , fs vertices so that
f1 + · · · + fs = n. Prove that the number of trees on the vertex set [n] that contain F

is exactly nn−2
∏s

i=1(fi/n
fi−1).

(c) Independence property for uniform spanning tree of Kn. Show that if H1 and H2 are
vertex-disjoint subgraphs of Kn, then for a uniformly random spanning tree T of Kn,
the events H1 ⊆ T and H2 ⊆ T are independent.

(d)ps4⋆ Packing rainbow spanning trees. Prove that there is a constant c > 0 so that for every
edge-coloring of Kn where each color appears at most cn times, there exist at least cn

edge-disjoint spanning trees, where each spanning tree has all its edges colored differently.
(In your submission, you may assume previous parts without proof.)

The next two problems use the lopsided local lemma.
E12.ps4 Packing two copies of a graph. Prove that there is a constant c > 0 so that if H is an

n-vertex m-edge graph with maximum degree at most cn2/m, then one can find two edge-
disjoint copies of H in the complete graph Kn.
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E13.ps4⋆ Packing Latin transversals. Prove that there is a constant c > 0 so that every n× n matrix
where no entry appears more than cn times contains cn disjoint Latin transversals.

F. Correlation inequalities

F1. Let G = (V,E) be a graph. Color every edge with red or blue independently and uniformly
at random. Let E0 be the set of red edges and E1 the set of blue edges. Let Gi = (V,Ei) for
each i = 0, 1. Prove that

P(G0 and G1 are both connected) ≤ P(G0 is connected)2.

F2. A set family F is intersecting if A∩B ̸= ∅ for all A,B ∈ F . Let F1, . . . ,Fk each be a collection
of subsets of [n] and suppose that each Fi is intersecting. Prove that

∣∣∣⋃k
i=1Fi

∣∣∣ ≤ 2n − 2n−k.
F3. Percolation. Let Gm,n be the grid graph on vertex set [m] × [n] (m vertices wide and n

vertices tall). A horizontal crossing is a path that connects some left-most vertex to some
right-most vertex. See below for an example of a horizontal crossing in G7,5.

Let Hm,n denote the random subgraph of Gm,n obtained by keeping every edge with prob-
ability 1/2 independently.

Let RSW(k) denote the following statement: there exists a constant ck > 0 such that for
all positive integers n, P(Hkn,n has a horizontal crossing) ≥ ck.
(a)ps5 Prove RSW(1).
(b)ps5 Prove that RSW(2) implies RSW(100).
(c) (Challenging) Prove RSW(2).

F4. Let A and B be two independent increasing events of independent random variables. Prove
that there are two disjoint subsets S and T of these random variables so that A depends only
on S and B depends only on T .

F5. Let U1 and U2 be increasing events and D a decreasing event of independent Boolean random
variables. Suppose U1 and U2 are independent. Prove that P(U1|U2 ∩D) ≤ P(U1|U2).

F6.ps5 Coupon collector. Let s1, . . . , sm be independent random elements in [n] (not necessarily
uniform or identically distributed; chosen with replacement) and S = {s1, . . . , sm}. Let I

and J be disjoint subsets of [n]. Prove that P(I ∪ J ⊆ S) ≤ P(I ⊆ S)P(J ⊆ S).
F7.ps5⋆ Prove that there exist c < 1 and ϵ > 0 such that if A1, . . . , Ak are increasing events of

independent Boolean random variables with P(Ai) ≤ ϵ for all i, then, letting X denote
the number of events Ai that occur, one has P(X = 1) ≤ c. (Give your smallest c. It is
conjectured that any c > 1/e works.)

F8. Disjoint containment.ps5⋆ Let S and T each be a collection of subsets of [n]. Let R ⊆ [n] be a
random subset where each element is included independently (not necessarily with the same
probability). Let A be the event that S ⊆ R for some S ∈ S. Let B be the event that T ⊆ R

for some T ∈ T . Let C denote the event there exist disjoint S, T ⊆ R with S ∈ S and T ∈ T .
Prove that P(C) ≤ P(A)P(B).
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G. Janson inequalities

G1. 3-AP-free probability.ps5 Determine, for all 0 < p ≤ 0.99 (p is allowed to depend on n), the
probability that [n]p does not contain a 3-term arithmetic progression, up to a constant factor
in the exponent. (The form of the answer should be similar to the conclusion in class about
the probability that G(n, p) is triangle-free. See C1 for notation.)

G2. Prove that with probability 1 − o(1), the size of the largest subset of vertices of G(n, 1/2)

inducing a triangle-free subgraph is Θ(log n).
G3. Nearly perfect triangle factor, again. Using Janson inequalities this time, give another solution

to Problem C8 in the following generality.
(a)ps5 Prove that for every ϵ > 0, there exists Cϵ > 0 such that such that with probability

1− o(1), G(n,Cϵn
−2/3) contains at least (1/3− ϵ)n vertex-disjoint triangles.

(b) (Optional) Compare the the dependence of the optimal Cϵ on ϵ you obtain using the
method in Problem C8 versus this problem (don’t worry about leading constant factors).

G4. Threshold for extensions.ps5⋆ Show that for every constant C > 16/5, if n2p5 > C log n, then
with probability 1− o(1), every edge of G(n, p) is contained in a K4.

Be careful, this event is not increasing, and so it is insufficient to just prove the result for one specific p.

G5. Lower tails of small subgraph counts. Fix graph H and δ ∈ (0, 1]. Let XH denote the number
of copies of H in G(n, p). Prove that for all n and 0 < p < 0.99,

P(XH ≤ (1− δ)EXH) = e−ΘH,δ(ΦH) where ΦH := min
H′⊆H:e(H′)>0

nv(H′)pe(H
′).

Here the hidden constants in ΘH,δ may depend on H and δ (but not on n and p).
G6. List chromatic number of a random graph.ps5⋆ Show that the list chromatic number of G(n, 1/2)

is (1 + o(1)) n
2 log2 n

with probability 1− o(1).
The list-chromatic number (also called choosability) of a graph G is defined to the minimum k such that

if every vertex of G is assigned a list of k acceptable colors, then there exists a proper coloring of G where

every vertex is colored by one of its acceptable colors.

H. Concentration of measure

H1. Sub-Gaussian tails.ps5 For each part, prove there is some constant c > 0 so that, for all λ > 0,

P(|X − EX| ≥ λ
√
VarX) ≤ 2e−cλ2

.

(a) X is the number of triangles in G(n, 1/2).
(b) X is the number of inversions of a uniform random permutation of [n] (an inversion of

σ ∈ Sn is a pair (i, j) with i < j and σ(i) > σ(j)).
H2. Prove that for every ϵ > 0 there exists δ > 0 and n0 such that for all n ≥ n0 and S1, . . . , Sm ⊂

[2n] with m ≤ 2δn and |Si| = n for all i ∈ [m], there exists a function f : [2n] → [n] so that
(1− e−1 − ϵ)n ≤ |f(Si)| ≤ (1− e−1 + ϵ)n for all i ∈ [m].

H3. Simultaneous bisections. Fix ∆. Let G1, . . . , Gm with m = 2o(n) be connected graphs of
maximum degree at most ∆ on the same vertex set V with |V | = n. Prove that there exists
a partition V = A ∪B so that every Gi has (1 + o(1))e(Gi)/2 edges between A and B.
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H4.ps5⋆ Prove that there is some constant c > 0 so that for every graph G with chromatic number
k, letting S be a uniform random subset of V and G[S] the subgraph induced by S, one has,
for every t ≥ 0,

P(χ(G[S]) ≤ k/2− t) ≤ e−ct2/k.

H5.ps5⋆ Prove that there is some constant c > 0 so that, with probability 1 − o(1), G(n, 1/2) has a
bipartite subgraph with at least n2/8 + cn3/2 edges.

H6. Let k ≤ n/2 be positive integers and G an n-vertex graph with average degree at most n/k.
Prove that a uniform random k-element subset of the vertices of G contains an independent
set of size at least ck with probability at least 1− e−ck, where c > 0 is a constant.

H7.ps6⋆ Prove that there exists a constant c > 0 so that the following holds. Let G be a d-regular
graph and v0 ∈ V (G). Let m ∈ N and consider a simple random walk v0, v1, . . . , vm where
each vi+1 is a uniform random neighbor of vi. For each v ∈ V (G), let Xv be the number
times that v appears among v0, . . . , vm. For that for every v ∈ V (G) and λ > 0

P

∣∣∣∣∣∣Xv −
1

d

∑
w∈N(v)

Xw

∣∣∣∣∣∣ ≥ λ+ 1

 ≤ 2e−cλ2/m

Here N(v) is the neighborhood of v.
H8. Prove that for every k there exists a 2(1+o(1))k/2-vertex graph that contains every k-vertex

graph as an induced subgraph.
H9.ps6⋆ Tighter concentration of chromatic number

(a) Prove that with probability 1− o(1), every vertex subset of G(n, 1/2) with at least n1/3

vertices contains an independent set of size at least c log n, where c > 0 is some constant.
(b) Prove that there exists some function f(n) and constant C such that for all n ≥ 2,

P(f(n) ≤ χ(G(n, 1/2)) ≤ f(n) + C
√
n/ log n) ≥ 0.99.

H10.ps6 Show that for every ϵ > 0 there exists C > 0 so that every S ⊆ [4]n with |S| ≥ ϵ4n contains
four elements with pairwise Hamming distance at least n− C

√
n apart.

H11.ps6 Concentration of measure in the symmetric group. Let U ⊆ Sn be a set of at least n!/2

permutations of [n]. Let Ut denote the set of permutations that can be obtained starting
from some element of U and then applying at most t transpositions. Prove that

|Ut| ≥ (1− e−ct2/n)n!

for every t ≥ 0, where c > 0 is some constant.
Hint in white: Apply Azuma to a Doob martingale that reveals a random permutation

For the remaining exercises in this section, use Talagrand’s inequality
H12. Let Q be a subset of the unit sphere in Rn. Let x ∈ [−1, 1]n be a random vector with

independent random coordinates. Let X = supq∈Q ⟨x, q⟩. Let t > 0. Prove that

P(|X −MX| ≥ t) ≤ 4e−ct2

where c > 0 is some constant.
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H13.ps6 First passage percolation. Prove that there are constants c, C > 0 so that the following
holds. Let G be a graph, and let u and w be two distinct vertices with distance at most ℓ

between them. Every edge of G is independently assigned some random weight in [0, 1] (not
necessarily uniform or identically distributed). The weight of a path is defined to be the sum
of the weights of its edges. Let X be the minimum weight of a path from u to w using at
most ℓ edges. Prove that there is some m ∈ R so that

P(|X −m| ≥ t) ≤ Ce−ct2/ℓ.

H14.ps6⋆ Second largest eigenvalue of a random matrix. Let A be an n× n random symmetric matrix
whose entries on and above the diagonal are independent and in [−1, 1]. Show that the second
largest eigenvalue λ2(A) satisfies

P(|λ2(A)− Eλ2(A)| ≥ t) ≤ Ce−ct2 ,

for every t ≥ 0, where C, c > 0 are constants.
Hint in white: use the Courant–Fischer characterization of the second eigenvalue

H15. Longest common subsequence. Let (a1, . . . , an) and (b1, . . . , bm) be two random sequences
with independent entries (not necessarily identically distributed). Let X denote the length
of the longest common subsequence, i.e., the largest k such that there exist i1 < · · · < ik and
j1 < · · · < jk with xi1 = yj1 , . . . , xik = yjk . Show that, for all t ≥ 0,

P(X ≥ MX + t) ≤ 2 exp

(
−ct2

MX + t

)
and P(X ≤ MX − t) ≤ 2 exp

(
−ct2

MX

)
where c > 0 is some constant.

I. Entropy method

The problems in this section should be solved using entropy arguments or results derived from
entropy arguments.

I1. Submodularity. Prove that H(X,Y, Z) +H(X) ≤ H(X,Y ) +H(X,Z).
I2. Let F be a collection of subsets of [n]. Let pi denote the fraction of F that contains i. Prove

that

|F| ≤
n∏

i=1

p−pi
i (1− pi)

−(1−pi).

I3.ps6⋆ Uniquely decodable codes. Let [r]∗ denote the set of all finite strings of elements in [r]. Let
A be a finite subset of [r]∗ and suppose no two distinct concatenations of sequences in A can
produce the same string. Let |a| denote the length of a ∈ A. Prove that∑

a∈A
r−|a| ≤ 1.

I4.ps6 Sudoku. A n2 × n2 Sudoku square (the usual Sudoku corresponds to n = 3) is an n2 × n2

array with entries from [n2] so that each row, each column, and, after partitioning the square
into n × n blocks, each of these n2 blocks consist of a permutation of [n2]. Prove that the
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number of n2 × n2 Sudoku squares is at most(
n2

e3 + o(1)

)n4

.

I5.ps6 Prove Sidorenko’s conjecture for the following graph.

I6.ps6⋆ Triangles versus vees in a directed graph. Let V be a finite set, E ⊆ V × V , and

△ =
∣∣{(x, y, z) ∈ V 3 : (x, y), (y, z), (z, x) ∈ E

}∣∣
(i.e., cyclic triangles; note the direction of edges) and

∧ =
∣∣{(x, y, z) ∈ V 3 : (x, y), (x, z) ∈ E

}∣∣ .
Prove that △ ≤ ∧.

I7.ps6⋆ Box theorem. Prove that for every compact set A ⊆ Rd, there exists an axis-aligned box
B ⊆ Rd with

volA = volB and volπI(A) ≥ volπI(B) for all I ⊆ [n].

Here πI denotes the orthogonal projection onto the I-coordinate subspace.
(For the purpose of the homework, you only need to establish the case when A is a union of grid cubes. It

is optional to give the limiting argument for compact A.)

I8. Let G be a family of graphs on vertices labeled by [2n] such that the intersection of every
pair of graphs in G contains a perfect matching. Prove that |G| ≤ 2(

2n
2 )−n.

I9. Loomis–Whitney for sumsets. Let A,B,C be finite subsets of some abelian group. Writing
A+B := {a+ b : a ∈ A, b ∈ B}, etc., prove that

|A+B + C|2 ≤ |A+B| |A+ C| |B + C| .

I10. Shearer for sums.ps6⋆ Let X,Y, Z be independent random integers. Prove that

2H(X + Y + Z) ≤ H(X + Y ) +H(X + Z) +H(Y + Z).
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